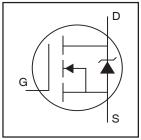
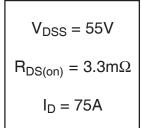
International Rectifier

AUTOMOTIVE MOSFET

IRF3805PbF IRF3805SPbF IRF3805LPbF


Features


- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Lead-Free

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

TO-220AB IRF3805PbF

D²Pak IRF3805SPbF

TO-262 IRF3805LPbF

Absolute Maximum Ratings

·	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	210	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	150	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package limited)	75	
I _{DM}	Pulsed Drain Current ①	890	
P _D @T _C = 25°C	Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy®	650	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ®	940	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ©		mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
_	Mounting Torque, 6-32 or M3 screw ②	10 lbf∙in (1.1N∙m)	

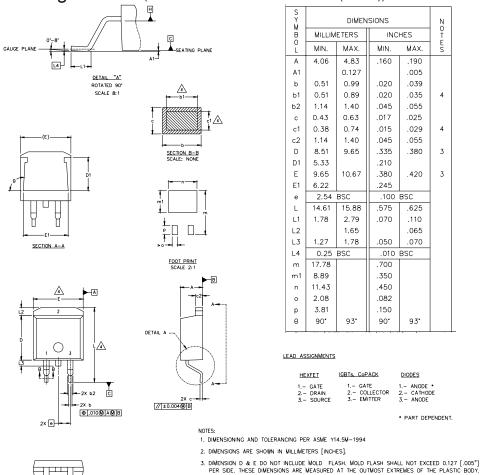
Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case 9		0.5 ⑩	°C/W
R _{ecs}	Case-to-Sink, Flat Greased Surface ⑦	0.50		
$R_{\theta JA}$	Junction-to-Ambient ⑦ ⑨		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ® 9		40	

IRF3805/S/LPbF

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	_	0.051	_	V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.6	3.3	mΩ	V _{GS} = 10V, I _D = 75A ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	75			V	$V_{DS} = 25V, I_{D} = 75A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V, V_{GS} = 0V$
				250		$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V
Q_g	Total Gate Charge		190	290		I _D = 75A
Q_{gs}	Gate-to-Source Charge		52		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		72			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		20			$V_{DD} = 28V$
t _r	Rise Time		150			$I_D = 75A$
t _{d(off)}	Turn-Off Delay Time		87		ns	$R_G = 2.6 \Omega$
t _f	Fall Time		93			V _{GS} = 10V ③
L_D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance	_	7960			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1260			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		630		pF	f = 1.0 MHz
C _{oss}	Output Capacitance	_	4400			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance	_	980			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		1550			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 44V $

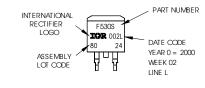

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			75		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			890		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 75A, V_{GS} = 0V$ 3
t _{rr}	Reverse Recovery Time		36	54	ns	$T_J = 25^{\circ}C, I_F = 75A, V_{DD} = 28V$
Q _{rr}	Reverse Recovery Charge		47	71	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)

IRF3805/S/LPbF

International TOR Rectifier

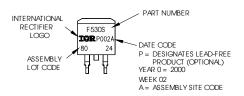
$D^2 Pak\ Package\ Outline\ (\text{Dimensions}\ are\ shown\ in\ millimeters\ (inches))$


D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024

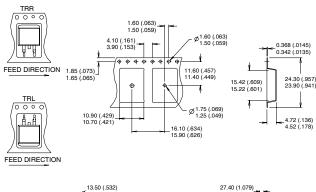
ASSEMBLED ON WW 02, 2000

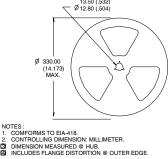
IN THE ASSEMBLY LINE "L"

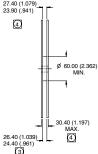

Note: "P" in assembly line position indicates "Lead-Free"

4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

5. CONTROLLING DIMENSION: INCH.






IRF3805/S/LPbF

International TOR Rectifier

D²Pak Tape & Reel Information

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting T_J = 25°C, L = 0.23mH ⑥ R_G = 25 Ω , I_{AS} = 75A, V_{GS} =10V. Part not recommended for use above this value.
- 3 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- $\ \ \, \oplus \ \, C_{oss}$ eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- S Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- This is only applied to TO-220AB pakcage.
- ® This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- 10 TO-220 device will have an Rth of 0.45°C/W.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market.

